THE [Fe₄S₄(SR)₄]²⁻ CATALYTIC REDUCTION OF DIPHENYLACETYLENE TO CIS-STILBENE IN THE PRESENCE OF NaBH,

Takashi Itoh, Tetsuo Nagano and Masaaki Hirobe* Faculty of Pharmaceutical Sciences, University of Tokyo Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract: The cluster $[Fe_4S_4(SR)_4]^{2-}$ catalyzed the reduction of diphenylacetylene to cis-stilbene in the presence of NaBH₄. The ligand effects for the reduction are investigated.

Iron-sulfur proteins exist widely in biological systems¹⁾ and have many important functions including electron transfer systems for N₂ fixation²⁾, CO₂ fixation and steroid hydroxylation³⁾. In order to understand the properties of iron-sulfur proteins, it is necessary to know the characteristics of their active sites. The clusters $[Fe_4S_4(SR)_4]^{2-}$, first synthesized by R. H. Holm et. al.,⁴⁾ are synthetic analogues of and have active sites similar to iron-sulfur proteins such as oxidized Fe ferredoxin from Peptococcus aerogenes or reduced Fe protein from Chromatium. The electronic properties of the clusters have been

Table 1. The reduction yields of diphenylacetylene by NaBHin the presenceof various "catalysts"

	catalyst		yield (%)"	
entry			cis	trans
1.	$[Fe_4S_4(SC_6H_5)_4]^2$	(0.1mmol)	70	2
2.	FeCl ₂	(0.lmmol)	1	0
3.	FeCl	(0.1mmol)	6	1
4.	Na ₂ S	(0.lmmol)	4	2
5.	с ₆ н ₅ sн	(0.1mmo1)	0	0
6.	$\operatorname{FeS_4C_4(C_6H_5)_4}$	(0.lmmol)	5	2
	(Schrauzer comple	ex)		

Reaction conditions: C₆H₅C≥CC₆H₅ (1.0mmol), NaBH₄ (10.0mmol), React. Temp. 20°C, Solvent, CH₃CN (10ml)/ CH₃OH (10ml) React. Time 1.0 hr(entry 1), 24 hr(entry 2-6), *In all cases (entry 2-6) diphenylacetylene (>90%) was recovered. investigated thoroughly by R. H. Holm and were found to be very similar to those of iron-sulfur proteins⁵⁾. The chemical reactivities of the cluster, however, have hardly been investigated. Recently we reported the catalytic function of these clusters in the thiol oxidation⁶⁾.

In this paper we wish to report that the clusters catalyze the reduction of diphenylacetylene with NaBH_4 to stilbene and that this reduction is stereo-selective, that is, the product is the cis-isomer.⁷⁾ (Scheme 1)

A typical experimental procedure is as follows: A CH₂CN/CH₃OH (10ml/10ml) solution containing NaBH₄(10.0mmol), diphenylacetylene(1.0mmol) and the cluster $[Fe_4S_4(SC_6H_5)_4]^2$ (0.10mmol) (Fig.1) was stirred under an Ar atmosphere. The reaction was initiated by the addition of the cluster. The reaction system was homogeneous. Cis-stilbene was formed with about a 70% yield, while the yield of the trans-isomer was only 2%. Other products were not detected. The recovery of the starting material was 28%. Identification of the product was performed in comparing I.R. and N.M.R. spectra with those of cis-stilbene and yields were determined by G.L.C.. Control experiments were also performed in using FeCl, FeCl₃, RSH or Na₂S instead of the cluster (Table 1). It was found that these compounds hardly assisted the reduction and a similar result occurred for the Schrauzer complex.⁸⁾ The reaction was almost complete after 1.0 hr. (Table 2, entries 3, 4) Also with increasing concentration of the cluster (up to 0.10 mmol) an increase in product yield occurred. (Table 2, entries 1,2,3,4) When the cluster concentration was greater than 0.10mmol, the yields decreased. (Table 2, entries 5,6) The reason for these results has yet to be found.

entry	$\left[\mathrm{Fe}_{4}\mathrm{S}_{4}(\mathrm{SC}_{6}\mathrm{H}_{5})_{4}\right]^{2-}$	reaction time	yields (%)	
.	(mmol)	(hr)	cis	trans
1.	0.05	0.25	50	0
2.	0.05	0.50	61	l
3.	0.10	0.25	67	2
4.	0.10	1.00	70	2
5.	0.20	1.00	45	2
6.	1.00	1.00	10	trace

Table 2: The reduction yields of diphenylacetylene by the cluster $[Fe_4S_4(SC_6H_5)_4]^{2-}$ in the presence of NaBH₄ in CH₃CN/CH₃OH

Reaction conditions:

$$\begin{split} & \texttt{C_6H_5C} = \texttt{CC_6H_5(1.0mmol), NaBH_4(10.0mmol)} \\ & \texttt{solvent; CH_3CN(10ml)/CH_3OH(10ml)} \end{split}$$

Next, the ligand effects of the clusters for the catalytic reduction are considered. Five clusters were synthesized according to the methods of R. H. Holm et.al.. 9) Consequently it has become apparent that the catalytic effects decrease in the case of R=alkyl groups. (Table 3, entries 4,5) Also the cluster (R=p-C $_{6}^{H}$ 4^{NO}2) is not very good for promoting the reaction (entry 3), suggesting a deactivating influence of the NO₂ group.¹⁰⁾

Next, solvent effects are examined. If CH_3^{OH} is not added to the reaction mixture, the yields become poor. (24hr, cis-stilbene yield: CH_3^{CN} 7%, DMF 5%, C₂H₅OC₂H₅ 3%) Moreover when C₂H₅OH(10ml)/CH₃CN(10ml) is used instead of CH_OH(10m1)/CH_CN(10m1), the yields increase to 95%(cis) and 4%(trans) though longer reaction times are required (5hr). Using iso-PrOH(10ml)/CH₃CN(10ml), 11-b) the yields fell to 27%. CH₃CN solvent(10ml) is added in order to dissolve the cluster.

When the reaction was carried out in CH_3OD/CH_3CN , only $cis-C_6H_5CD=CHC_6H_5$ was formed. This was confirmed by N.M.R. spectra (& (CDC1₃/TMS): 6.59(1H, s), 7.20 (10H, m)) and Mass spectra(m/e: 181(M⁺)). Namely it was revealed that one hydrogen atom of cis-stilbene originated from the solvent(CH₂OD) and the other from NaBH4.

These above results show that the $[Fe_4S_4(SR)_4]^2$ cluster compounds are excellent catalysts for the acetylene reduction to stilbene. Also it is

The reduction yields of Diphenylacetylene by the various clusters Table 3: in the presence of NaBH, in CH₂CN/CH₂OH

~~±~~~	(Fo S (CD) 1 ²⁻	manation time			
encry	{Fe4 ³ 4 ^(SK) 4	reaction time		ATGTOP(2)	
	(R)	(hr)	cis	trans	
1.	C ₆ ^H 5	1.0	70	2	
2.	p-C ₆ H ₄ CH ₃	1.0	74	4	
3.	p-C ₆ H ₄ NO ₂	4.0	45	8	
4.	t-C4H9	20.0	7	0	
5.	CH2C6H5	20.0	11	1	

Reaction conditions: $C_6^{H_5}C \equiv CC_6^{H_5}$ (1.0mmol), NaBH₄ (10.0mmol) [Fe₄S₄(SR)₄]²⁻(0.1mmol), solvent; CH₃CN(10ml)/CH₃OH(10ml)

particularly interesting that the reduction is stereoselective. A slight amount of trans-stilbene seems to be produced by isomerization of cis-isomer. The study on the reaction mechanism is significant for knowing the characteristics of iron-sulfur proteins. Studies on the mechanism are in progress.

Acknowledgement: This study supported by the Grant in Aid for Scientific Research from the Ministry of Education, the Japanese Government.

REFERENCES

- 1) a) J.R.Herriott and L.H.Jensen, Acta Crystallogr., Sect.B, 29, 943 (1973).
 - b) L.H.Jensen, Iron-Sulfur Proteins, 2, 163 (1973).
 - c) E.T.Adman, L.C.Sieker and L.H.Jensen, J. Biol. Chem., <u>248</u>, 3987 (1973); 251, 3801 (1976).
 - d) E.Adman, K.D.Watenpaugh and L.H.Jensen, Proc. Natl. Acad. Sci. U.S.A., 72, 4854 (1975).
 - e) C.W.Carter, Jr., Iron-Sulfur Proteins, 3, 157 (1977).
- 2) H.Dalton, L.E.Mortenson, Bacteriol. Rev., 36, 231 (1972).
- 3) K.Suzuki, T.Kimura, Biochem. Biophys. Res. Commun., 19, 340 (1965).
- a) B.A.Averill, T.Herskovitz, R.H.Holm and James A.Ibers, J. Am. Chem. Soc., 95, 3523 (1973).
 - b) R.H.Holm, W.D.Philips, B.A.Averill, J.J.Mayerle and T.Herskovitz, J. Am. Chem. Soc., 96, 2109 (1974).
- 5) As summaries of this research;
 - a) R.H.Holm, Endeavour, 34, 38, (1975).
 - b) R.H.Holm and J.A.Ibers, Iron Sulfur Proteins, 3, 205 (1977).
 - c) R.H.Holm, Acc. Chem. Rev., 10, 427 (1977).
- 6) T.Nagano, K.Yoshikawa and M.Hirobe, Tetrahedron Letters 1980 in press.
- Presented at the 99th Annual Meeting of the Pharmaceutical Society of Japan, Sapporo, August, 1979.
- G.N.Schrauzer, V.P.Mayweg, H.W.Finck and W.Heinrich, J. Am. Chem. Soc., <u>88</u>, 4604 (1966).
- 9) B.V.Depamphilis, B.A.Averill, T.Herskovitz, L.Que, Jr. and R.H.Holm, J. Am. Chem. Soc., 96, 4159 (1974).
- Unpublished data. The clusters reduce several nitro groups to amine in CH₂CN solution under Ar atmosphere.
- 11) a) In all cases diphenylacetylene (>90%) was recovered.b) Any other products were not detected.

(Received in Japan 4 January 1980)

1346